CONTROL THEOREMS OF p-NEARLY ORDINARY COHOMOLOGY GROUPS FOR SL(n)

نویسنده

  • H. HIDA
چکیده

— In this paper, we prove control theorems for the p-adic nearly ordinary cohomology groups for SL(n) over an aribitrary number field, generalizing the result already obtained for SL(2). The result should have various implications in the study of p-adic cohomological modulat forms on GL(n). In particular, in a subsequent paper, we will study p-adic analytic families of cuch Hecke eigenforms. RÉSUMÉ. — Dans cet article, on démontre le théorème de contrôle pour les groupes de cohomologie quasi-ordinaire p-adique de SL(n) sur un corps de nombre arbitraire en généralisant le résultat déjà connu pour SL(2). Le résultat doit avoir des implications variées dans la théorie des formes modulaires p-adiques cohomologiques sur GL(n). En particulier, on étudiera des familles p-adiques analytiques des formes propres de Hecke dans un prochain article. Introduction Let p be a prime. In [H2], we have studied the control theorem for p-ordinary cohomology groups for the algebraic group SL(2) defined over an arbitrary number field F . Here we generalize the result to reductive algebraic groups G over Q whose group of Qp-points is isomorphic to GLn(Fp) for Fp = F ⊗Q Qp. We fix such an isomorphism (GL) i :G(Qp) ∼= GLn(Fp). (*) Texte reçu le 13 juin 1994, révisé le 16 août 1994. The author is partially supported by an NSF grant. Writing the paper was basically finished while the author was visiting the Galilée Institute at the University of Paris XIII (France), and some of the results in this paper was presented in a short series of lectures there. The author is grateful to J. Tilouine for the invitation to the Institute. Haruzo HIDA, Department of Mathematics, UCLA, Los Angeles, CA 90024 (USA) and Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060 (Japan). Email: [email protected]. AMS classification: 11F33, 11F55, 11F60, 11F67, 11F75, 11F85. BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037–9484/1995/425/$ 5 c © Société mathématique de France

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Cohomology of Partial Flag Manifolds

We give elementary geometric proofs of the structure theorems for the (small) quantum cohomology of partial flag varieties SL(n)/P , including the quantum Pieri and quantum Giambelli formulas and the presentation.

متن کامل

Digital cohomology groups of certain minimal surfaces

In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...

متن کامل

AUTOMORPHIC SYMBOLS, p-ADIC L-FUNCTIONS AND ORDINARY COHOMOLOGY OF HILBERT MODULAR VARIETIES

We introduce the notion of automorphic symbol generalizing the classical modular symbol and use it to attach very general p-adic L-functions to nearly ordinary Hilbert automorphic forms. Then we establish an exact control theorem for the p-adically completed cohomology of a Hilbert modular variety localized at a suitable nearly ordinary maximal ideal of the Hecke algebra. We also show its freen...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

Rigidity of P -adic Cohomology Classes of Congruence Subgroups of Gl(n,z)

The main result of [Ash-Stevens 97] describes a framework for constructing padic analytic families of p-ordinary arithmetic Hecke eigenclasses in the cohomology of congruence subgroups of GL(n)/Q where the Hecke eigenvalues vary p-adic analytically as functions of the weight. Unanswered in that paper was the question of whether or not every p-ordinary arithmetic eigenclass can be “deformed” in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995